Radioactivity Worksheet

1. State the number of neutrons and protons in each of the following nuclei:
 a. 3_1H : __Neutrons__ = 1 __Protons__ = 1
 b. $^{12}_{6}C$: __Neutrons__ = 6 __Protons__ = 6
 c. $^{56}_{26}Fe$: __Neutrons__ = 30 __Protons__ = 26
 d. $^{197}_{79}Au$: __Neutrons__ = 118 __Protons__ = 79

2. The three types of radioactive emissions are called alpha (α), beta (β) and gamma (γ) radiation. Complete the table below with the correct information about each type.

<table>
<thead>
<tr>
<th></th>
<th>Charge</th>
<th>Atomic Symbol</th>
<th>Can Be Stopped By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>+2</td>
<td>4_2He</td>
<td>paper</td>
</tr>
<tr>
<td>Beta</td>
<td>-1</td>
<td>0_e</td>
<td>aluminum</td>
</tr>
<tr>
<td>Gamma</td>
<td>0</td>
<td>$^0_0\gamma$</td>
<td>lead</td>
</tr>
</tbody>
</table>

3. Which of the three radioactive emissions (α, β, γ) best fit the following statements? Write the correct symbol/s on the lines.
 a) These emissions are charged. α, β
 b) This emission is the most massive (heaviest). α
 c) This emission is the most charged. α
 d) This emission is most dangerous outside of the body. γ
 e) This emission is stopped by thin paper or a few centimeters of air. α
 f) This emission can travel through paper, but is stopped by aluminum. β
 g) This emission can travel through fairly thick lead. γ

4. Which type of radiation – alpha, beta, or gamma:
 a. Results in the greatest change in atomic number? Why?
 Alpha - changes by 2

 b. Results in the least change in atomic number? Why?
 Gamma - no change in atomic number
c. Produces the greatest change in mass number? Why?

\[\text{alpha} - \text{changes mass number by 4} \]

d. Produces the least change in mass number? Why?

\[\text{Beta} \:\text{gamma} \: - \text{no change in mass number} \]

5. Complete the following nuclear reactions:

a. \[^{226}_{88}\text{Ra} \rightarrow ^{8}X + _{0}^{0}\text{e} \]
\[^{226}_{88}\text{Ra} \rightarrow ^{206}_{82}\text{Ac} + _{-1}^{0}\text{e} \]

b. \[^{209}_{84}\text{Po} \rightarrow ^{205}_{82}\text{Pb} + _{2}^{4}\text{He} \]
\[^{209}_{84}\text{Po} \rightarrow ^{205}_{82}\text{Pb} + _{2}^{4}\text{He} \]

c. \[^{238}_{92}\text{U} \rightarrow ^{234}_{90}\text{Th} + _{2}^{4}\text{He} \]
\[^{238}_{92}\text{U} \rightarrow ^{234}_{90}\text{Th} + _{2}^{4}\text{He} \]

d. \[^{234}_{91}\text{Th} \rightarrow ^{234}_{91}\text{Pa} + _{2}^{4}\text{He} \]
\[^{234}_{91}\text{Th} \rightarrow ^{234}_{91}\text{Pa} + _{2}^{4}\text{He} \]

e. \[_{2}^{4}\text{He} + _{7}^{14}\text{N} \rightarrow _{8}^{17}\text{O} + _{1}^{1}\text{H} \]
\[_{2}^{4}\text{He} + _{7}^{14}\text{N} \rightarrow _{8}^{17}\text{O} + _{1}^{1}\text{H} \]

6. When isotope bismuth-213 emits an alpha particle:

a. Write out the nuclear equation:
\[^{213}_{83}\text{Bi} \rightarrow ^{4}_{2}\text{He} + ^{209}_{83}\text{Th} \]

b. What new element results if the isotope, instead, emits a beta particle?

\[\text{Polonium} \]